
COE CST Third Annual Technical Meeting:

Development and Demonstration of an ADS-B Prototype for Reusable Launch Vehicles

Richard S. Stansbury

30 October 2013

Overview

- Team Members
- Purpose of Task
- Research Methodology
- Results or Schedule & Milestones
- Next Steps
- Contact Information

Team Members

- PIs: Richard S. Stansbury and Massood Towhidnejad
 - Embry-Riddle Aeronautical University
 - Next Generation Embry-Riddle Advanced Research Laboratory (NEAR)
- Students:
 - Dominic Tournour, BS Software Engineering
 - Dylan Rudolph, MS in Electrical and Computer Engineering
- Research Partners
 - Nick Demidovich, FAA AST, FAA Project Lead
 - Jon Dinofrio, FAA WJHTC
 - Chuck Greenlow, FAA WJHTC
 - David Edwards, MITRE Corp.

Purpose of Task

- Support of suborbital reusable launch vehicles (sRLVs) for commercial space transportation requires considerations for safe integration into the national airspace system (NAS)
 - Airspace sterilization
 - Greatest uncertainty during descent under parachute
- ADS-B technology has been used for situational awareness for pilots and air traffic management
 - Provides tracking capability within the NAS
 - Limitations exist beyond the NAS
 - Altitude limits (e.g. 101,337.5 ft under UAT specification)
 - Vertical velocity limits (roughly 320 knots under UAT)
 - GPS limits (ITAR restricts, < 1,000 knots and < 60,000 ft)
- This research presents the adaptation of existing ADS-B technology to support operation for sRLVs exceeding current technology limits

MITRE UBR-TX

- UAT Beacon Radio Transmit Only (UBR-TX)
 - Broadcasts state vector once per second
 - Supports both barometric and GPSbased altitudes
- Balloon / Rocket Flight Tests
 - 2009 Red Glare VII (amateur rocket)
 - 2010 AFRL research balloon
 - 2010 NASA Wallops sounding rocket
 - 2012 Up Aerospace Spaceloft VI
 - Manifest for 2013 Spaceloft VII flight

Technical Issues

- MITRE recommended an adaptation of the existing design and software to develop an advanced UBR capable of supporting use onboard sRLVs
 - Upgrade GPS to exceed ITAR limits
 - 60,000 ft
 - 1,000 knots
 - Upgrade firmware
 - Support binary protocol of new GPS
 - Address altitude limit
 - Ruggedization
 - Mil-spec equivalent components
 - New enclosure

Hardware Upgrades

- GPS: Javad TR-G2 w/ space velocities enabled
- Daugherboard: power regulation, TTL-to-RS232, connectivity
- Battery: SAFT LO-26SX (3VDC)
- UBR Board: Replaced numerous components with Mil-spec equivalents
- UAT Antennas
 - Ballon: Antcom 978MHz antenna (stub)
 - Rocket: UB Corp. 978MHz blade antenna
- Ruggedization:
 - Enclosure constructed to house new unit
 - Epoxy potting of potentially shock-and-vibe sensitive components
 - Thermal issues including both heating and cooling must be addressed for each platform
 - Ecosorb EMI/RFI isolation material used to line enclosure

	Specification
Length	5.75" (14.6 cm)
Width	2.5" (6.35 cm)
Height	2.5" (6.35 cm)
Weight (UBR board, daughter board, GPS, battery, and enclosure)	790 g (27.9 oz)
Weight (cables, antennas, etc.)	85-300g est.
Nominal power Consumption	840mA @ 3VDC
Nominal battery capacity	7.75 Ah

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Software Upgrades

- Reuse of MITRE software for the UBR-TX board
- GPS software parser
 - Previously, parsed SiRF binary protocol
 - Replaced with Javad GREIS message parsers
 - Unit conversions between Javad data output to UAT required data

<u>Maximum altitude</u>

- Ideal approach: utilize part of the reserved message space to increase bit size beyond 12-bits
 - Not parsed by current GBT data feeds
- Interim approach: "roll-over" altitude once it exceeds altitude limit

Results or Schedule/Milestones

- Flights funded under NASA Flight Opportunities Program AFO1 and AFO5
- Near Space Corporation Nano Balloon System (NBS), 22 Jan 2013
 - Achieved altitude near 59,000 ft
- NSC NBS Flight #2, 15 Feb 2013
 - Achieved altitude near 94,000 ft
 - · Details on next slide
- NSC, High Altitude Shuttle System
 - Achieved altitude near 106,000 ft
- Up Aerospace, Space Loft 8, 12 Nov 2013

NSC NBS Flight Details, 15 Feb 2013

Maximum Altitude (geometric), MSL	94,025 ft
Maximum Altitude (pressure), MSL	94,200 ft
Flight Time – Ascent	116 min
Flight Time – Float	58 min
Flight Time – Descent	38 min
Flight Time – Total	212 min
Total Number of Unique GBTs Receiving	31
Data	(available in post-
	process)
Number of GBTs Tracking at Apogee	11
	(available in post-
	process)

Additional Flight Details

- Terrain had a major impact on ability to track unit at launch and recovery sites
- Minimum temperature (courtesy of NSC) inside foam container was -20.6 degrees C
- Timing accuracy indicated no uncompensated clock drift (most data points fall within +/- 1us of UAT specs)
- Emitter category 15 (space/trans-atmospheric vehicle) data is not smoothed resulting in "noisy" vertical rate information
- ITT Exelis system current features a 300 NM cap, which prevented an adequate analysis of achievable range

Next Steps

- Upcoming Flights
 - 12 Nov 2013, Up Aerospace Spaceloft 8
 - TBD Spring 2014, Up Aerospace Spaceloft 9
 - Looking into additional opportunities
- Future engineering developments
 - Ability to boost power for higher altitude performance (e.g. satellite or International Space Station)
 - Transition toward DO-282B to "go to glass", i.e. visible to currently equipped aircraft
 - Address high altitude and velocity limits via reserved message

Contact Information

- Richard S. Stansbury
- Address:

Electrical, Computer, Software, and Systems Engineering Department 600 S. Clyde Morris Blvd Daytona Beach, FL 32137

- Email: richard.stansbury@erau.edu
- Phone: 386-226-7923

BACKUP SLIDES

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Center of Excellence for Commercial Space Transportation

Test and Demonstration Plan

• FAA William J. Hughes Technical Center

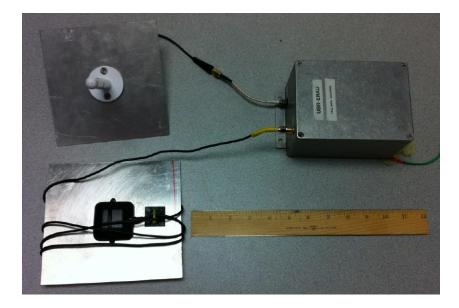
- GNSS simulator testing
 - Balloon flight simulation
 - Sounding rocket simulation
- Field support

NASA Flight Opportunities

- AFO-1 (flown)
 - NSC Nano Balloon System
- AFO-5 (approved)
 - NSC High Altitude Shuttle System (HASS)
 - Up Aerospace SpaceLoft VIII (or future flight)
- Prior to flight onboard a sounding rocket, an amateur rocket (TBD) will be used to test system

Outline

- Background
- Upgrades of ADS-B unit for suborbital flight
- High altitude balloon flight testing
 - Test goals
 - Flight test #1
 - Flight test #2
- Future flights and development


Success Criteria for Balloon Flight

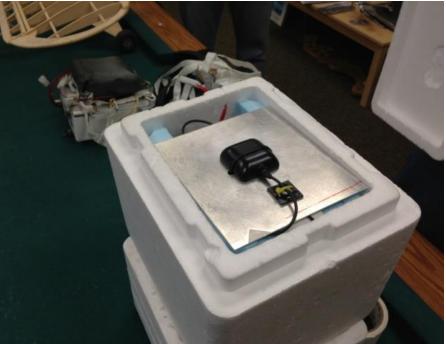
- Successful launch and recovery of UBR-ERAU onboard NSC NBS
- Broadcast ADS-B UAT messages once per second
- Tracking payload via FAA/ITT live data feeds
- Mobile ground-based receiver will assist in filling data gaps near takeoff and recovery
- Payload would achieve an altitude of no-less than 90,000 ft. MSL (mean sea level) in order to demonstrate:
 - Successful operation in near space environment (temperatures and atmosphere)
 - Demonstrate operation at altitudes in excess of the GPS ITAR/COCOM limit of 60,000 ft. MSL

Payload Integration

- Foam enclosure houses payload for NBS
- Internal power via onboard batteries
- Netting material used to secure payload enclosure to balloon and its telemetry unit
- Cable from NBS telemetry unit • routed to payload for remote enable/disable capability
 - Telemetry unit also provides position, altitude, and pressure data

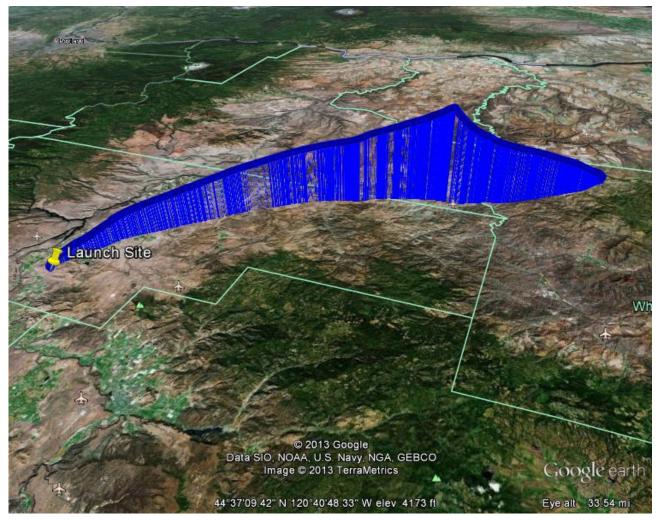
Near Madras, Oregon, January 2013

FLIGHT TEST NUMBER 1


COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Center of Excellence for Commercial Space Transportation

Center of Excellence for Commercial Space Transportation



Results from Preliminary Data Analysis

Maximum Altitude (geometric), MSL	59,575 ft
Maximum Altitude (pressure), MSL	59,325 ft
Flight Time – Ascent	63.07 min
Flight Time – Descent	29.33 min
Flight Time – Total	92.40 min
Total Number of Unique GBTs Receiving Data	14
Number of GBTs Tracking at Apogee	8

Flight Track from launch site to recovery site (tracks left to right)

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

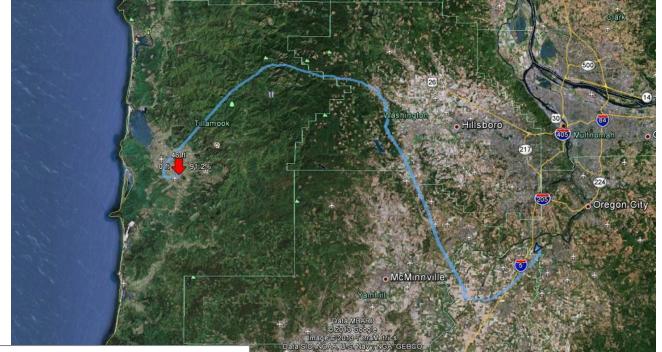
Center of Excellence for Commercial Space Transportation

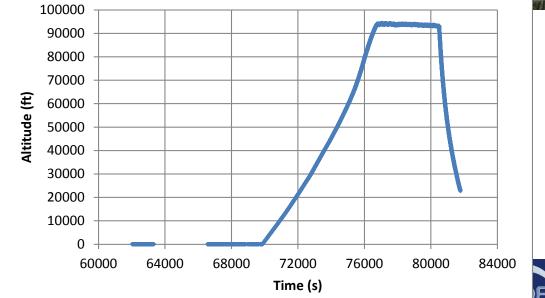
Near Tillamook, Oregon, January 2013

FLIGHT TEST NUMBER 2

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Center of Excellence for Commercial Space Transportation




Results from Preliminary Data Analysis

Maximum Altitude (geometric), MSL	94,025 ft
Maximum Altitude (pressure), MSL	94,200 ft
Flight Time – Ascent	116 min
Flight Time – Float	58 min
Flight Time – Descent	38 min
Flight Time – Total	212 min
Total Number of Unique GBTs Receiving	31
Data	(available in post-
	process)
Number of GBTs Tracking at Apogee	11
	(available in post-
	process)

Center of Excellence for Commercial Space Transportation

Uctober 20-30, 2013

Additional Flight Details

- Terrain had a major impact on ability to track unit at launch and recovery sites
- Minimum temperature (courtesy of NSC) inside foam container was -20.6 degrees C
- Timing accuracy indicated no uncompensated clock drift (most data points fall within +/- 1us of UAT specs)
- Emitter category 15 (space/trans-atmospheric vehicle) data is not smoothed resulting in "noisy" vertical rate information
- ITT Exelis system current features a 300 NM cap, which prevented an adequate analysis of achievable range

